1/43

NN Week 05
Data for Summarising and Presenting

Data
Science Data

Dr Jon Cardoso-Silva
LSE Data Science Institute

~, 19 Feb 2026

https://jonjoncardoso.github.io/
https://lse.ac.uk/dsi

2/43

Today s Goals

e Learn: Custom functions and the .apply() method
e Discover: Temporal grouping and summarisation

e Apply: Present summary tables with pandas Styler

Why this matters: These skills directly support your Zs Mini-
Project 1 work.

4
LSE DS105W (2025/26) @

http://localhost:4861/2025-2026/winter-term/summative/mini-project-1.html
http://localhost:4861/2025-2026/winter-term/summative/mini-project-1.html

3/43

From Loops to Functions

In the ® W04 Lab, you explored nested np.where() and boolean columns when classifying
weather attributes like temperature and rainfall.

Today, we'll solve that same problem with a different (cleaner) approach: custom functions
and the .apply() method.

iy
LSE DS105W (2025/26) @

http://localhost:4861/2025-2026/winter-term/weeks/week04/lab.html

The Problem Were Solving

The task was to classify weather based on temperature and rainfall into the following
categories:

Category Description With nested
Hot & Dry >25°C
and weather_type = np.where(
<Imm temp >= 28,
Hot & Wet > 25°C np.where(rain < 1, "Hot & Dry", "Hot & Wet"),
and np.where(
>=1mm temp >= 20,
Mild & Dry in 20-25°C np.where(rain < 1, "Mild & Dry", "Mild & Wet"),
and IICOO'LII
<Tmm)
Mild & Wet in 20-25°C
and
>=Tmm
Cool <20°C
and
any

v
r
LSE DS105W (2025/26) q&

What if...

Instead of using nested , | could just more naturally say:

classify _weather(20, 1)

and get this as a response:

(a single normal string)

... So that | could apply this to every combination of temperature and rainfall | have in my
dataset?

v
r
LSE DS105W (2025/26) q&

In the olden days...

Back in the days where we used loops and separate

weather_types =

weather_type

[]

lists/arrays, this would look like this:

for i in range(len(temps)):

classify weather(temps[i]l, rain[i])

weather_types.append(weather_type)

But we don’t do loops anymore

LSE DS105W (2025/26)

In the age of pandas..

If we had such a way to
classify weather, we

could use [TEITIR]
in pandas to

classify weather for
every row in our dataset
in a single line of code
(instead of a for loop).

It would look like this:

df ['weather'] = df. (classify_weather, axis=1)

Neat, wouldn’t you say?

l | will explain the axis=1 argument in more detail in a moment...

LSE DS105W (2025/26)

7143

What is a function?

It's a reusable block of code that takes inputs and produces an output. You can invoke it by
calling its name with the appropriate inputs.

How to define a function: Key components:

def function_name(paraml, param2,

o : defines a function

Function name: you choose a
descriptive and clear name

Parameters: are the inputs to the
...code that does something with the params... function

Docstring explains what it does

return output

produces the output

v
r
LSE DS105W (2025/26) q&

Functions Make Logic Testable

You always test a function on single values first.

print(f"30°C: {is_hot(30)}")

print(f"20°C: {is_hot(20) ;")
print(f"25°C: {is_hot(25)}")

Why test first? Easier to debug a function than nested
!

LSE DS105W (2025/26)

From loops to functions

The method in allows you to apply a function to every element in a Series.

It works kind of like a loop, but cleaner and more efficient.
It looks like this:

df ['temperature'].apply(is_hot)

The output is a new pandas Series with the same index as the original Series.

That is, something like this:

is_hot |

dtype: object

v
r
LSE DS105W (2025/26) q&

https://pandas.pydata.org/docs/reference/api/pandas.Series.html

Adding a new column to the DataFrame

e If you assign the output of the method to a new column in the DataFrame...

e using the = operator:

df['is_hot'] = df['temperature'].apply(is_hot)

e alternatively, you can use the method:

df = df.assign(is_hot=df['temperature'].apply(is_hot))

LSE DS105W (2025/26)

e Either way, you would get a new column in the DataFrame with
the results:

date temperature is_hot
2024-08-15 28 True
2024-08-16 22 False
2024-08-17 26 True

LSE DS105W (2025/26)

12/43

Filtering data (recap)

e Last week, we talked about code that looked like this:

df [df ['temperature'] > 25]

That is, you create a boolean array using a logical condition and then use it to filter the
DataFrame.

e By the way, sometimes | find it clearner to split this into two steps:

mask = df['temperature'] > 25

df [mask]

It makes it easier to read and debug.

v
r
LSE DS105W (2025/26) !&

Filtering data with

e You can also use to filter data.

df [df ['temperature'].apply(is_hot)]

This is equivalent to the code we saw last week.

mask = df['temperature'].apply(is_hot)

df [mask]

LSE DS105W (2025/26)

15/43

When to use which?

In this particular case, | think the first approach is easier to read and debug:
df [df ['temperature'] > 25].

This is because greater than (>) is a simple logical operation that is already
vectorised and implemented in the pandas (and numpy) library.

e Make it a habit to search through the pandas documentation to
see if the operation you want to perform is already vectorised.

LSE DS105W (2025/26)

16 /43

The two types of .apply()

e Whenyoudodf[column].apply(function), you are applying
the function to every element in the pandas Series.

e Butifyoudodf.apply(function), you are applying the
function to each dimension (row or column) in the DataFrame.

y
LSE DS105W (2025/26) @

17 /43

The two types of data in pandas

e Pandas has two major data types:
= Series: one-dimensional (a single column or a single row).

o It’s essentially a numpy array with additional metadata:
iIndex and name.

= DataFrame: two-dimensional (a table of rows and columns).

o |t's essentially a [e]illeiilo]aNoiloL-1ale FERSEIHEE].

4
LSE DS105W (2025/26) @

https://pandas.pydata.org/docs/reference/api/pandas.Series.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.index.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.name.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

18 /43

The two types of .apply () (continued)

e Whenyoudodf[column].apply(function), you are applying
the function to every element in the pandas Series.

e Butifyoudodf.apply(function), you are applying the
function to each dimension (row or column) in the DataFrame.

= You can specify an axis argument to control which dimension
you want to apply the function to.

= axis=0 means “down the rows” (column-wise) and axis=1
means “across columns” (row-wise).

y
LSE DS105W (2025/26) @

One-liners with

Sometimes you just want a quick, inline function for a one-liner. Use

df['is_hot'] = df['temperature'].apply(lambda t: t >= 25)
You can also combine with for method chaining:

(
df

.assign(
year=lambda d: d['date'].dt.year,

month=1lambda d: d['date'].dt.month,
is_hot=1lambda d: d['temperature'] >=

When logic grows complex, prefer a named function for readability and testing.

LSE DS105W (2025/26)

Comparing Approaches

Nested (W04 Lab):

weather = np.where(
temp >= 28,

np.where(rain < 1, "Hot & Dry", "Hot & Wet"),

Function + (Clean):

def classify_weather(row):
temp = row['temperature'l]
rain = row['rainfall']

if temp >= 28 and rain < 1:
return "Hot & Dry"

df ['weather'] = df.apply(classify_weather, axis=1)

-~ Note: | used as the parameter rather than the individual columns.

LSE DS105W (2025/26)

21/43

When to Use Functions

Extract functions when: Use built-in operations when:
e Logic is complex (multiple e Logicis simple (one condition)
conditions)

Vectorised operations suffice
e You need to test edge cases

(lots of if-elif-else statements)

Pandas/NumPy already has the

operation
e You'll reuse the logic elsewhere
. « Get used to searching the documentation.
e Nested conditionals would become We can't possibly teach you all the
unreadable operations that are available in pandas and
numpy.

LSE DS105W (2025/26)

22 /43

Connecting to Your Work

You might need to use custom functions (def statements) and
apply () in your £ Mini-Project 1 either to filter data based on
complex logic or to create classification labels.

4
LSE DS105W (2025/26) @

http://localhost:4861/2025-2026/winter-term/summative/mini-project-1.html

23 /43

Temporal Data

To answer questions like the one you are working on in your Mini-Project 1, that is,

“Does L.ondon’s air clean up on weekends??

You need to:

1. Work with datetime objects
2. Extract date components (year, month, day, day of week)

3. Aggregate data by date components to reveal patterns

iy
LSE DS105W (2025/26) @

Datelime Conversion

APIls typically return timestamps as Unix epoch (seconds since
1970):

1633046400 *

Convert to datetime:

df ['date'] = pd.to_datetime(df['timestamp'], unit='s', utc=

Now you get readable dates:
2021-10-01 00:00:00+00:00

LSE DS105W (2025/26)

The Accessor

Once you have datetime objects, you have superpowers!

You can extract components of the datetime object using the
accessor:

df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month

df['day'] = df['date'].dt.day
df ['dayofweek'] = df['date'].dt.dayofweek

Before: After:
date date year month day dayofweek
2024-08-15 2024-08-15 2024 8 15 3 (Thursday)
2024-08-16 2024-08-16 2024 8 16 4 (Friday)
2024-08-17 2024-08-17 2024 8 17 5 (Saturday)

v
r
LSE DS105W (2025/26) q&

Recommended readings

| really like this RealPython tutorial Using
Python datetime to Work With Dates and
Times. Give it a read!

Keal Pjthon

Using Python datetime to
Work With Dates and Times

by Bryan Weber M37m ®a @ intermediate

26 /43

Most of the features that exist in the Python
default datetime module are also available in
the pandas library.

This pandas documentation page is also a
good resource.

liil
i

= |4l pandas Q

Time series [date functionality

pandas contains extensive capabilities and features for working with time
series data for all domains. Using the NumPy datetime64 and
timedelta64 dtypes, pandas has consolidated a large number of features
from other Python libraries like scikits.timeseries as well as created a
tremendous amount of new functionality for manipulating time series data.

For example, pandas supports:

Parsing time series information from various sources and formats

In [1]: import datetime

In [2]: dti = pd.to_datetime(
["1/1/2018", np.datetime64("2018-01-01"), datetime.d

i)

LSE DS105W (2025/26) 5

https://realpython.com/python-datetime/
https://realpython.com/python-datetime/
https://realpython.com/python-datetime/
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

27143

Coffee Break

After the break:

e The groupby () method: split-
apply-combine strategy

e pandas Styler for presenting your
data

iy
LSE DS105W (2025/26) @

28 /43

plit -> App

Very often, we need to calculate summary statistics for groups of
data instead of for the entire dataset.

S ly -> Combine
g .

For example, you might want to calculate the average
temperature for each month in a year.

iy
LSE DS105W (2025/26) @

29 /43

The groupby () method

The pandas library provides a method called groupby () to help you do precisely this:

df.groupby('year')['temperature'].mean()

Before (raw data): What pandas will do: After:
date year temperature e Separate the data into groups based on year temperature
the year column. 2021 13.5
2021-01-15 2021 5 e Calculate the mean for the entire 2022 15.0
2021-06-15 2021 22 temperature column for each year,
2022-01-15 2022 6 e Combine the results back together into a

new DataFrame <

2022-06-15 2022 24

LSE DS105W (2025/26) T

30/43

GroupBy Fundamentals

Basic pattern:

df.groupby('grouping_column')['column_to_aggregate'].function()

Common aggregation functions:

e .mean() -average

e .median()-middle value
e .sum() -total

e .max()-maximum

e .min() -minimum

e .count()-number of items

iy
i
LSE DS105W (2025/26) @

Method Chaining for Readability

When chaining multiple operations, split them across lines:

plot_df = (
df.groupby('year') ['temperature']

.mean()
.reset_index()

Each operation is on its own line, making the transformation clear and debuggable. (R users
might recognise this as similar to the operator.)

Alternative (harder to read?):

plot_df = df.groupby('year')['temperature'].mean().reset_index()

LSE DS105W (2025/26)

Temporal Grouping Examples

yearly_temps = (
df
.assign(year=df['date'].dt.year)
.groupby('year') ['temperature’]
.mean ()

hot_days_per_month = (
df.loc[df['is_hot']]
.assign(month=df['date'].dt.month)
.groupby('month')
.size()

You can group by multiple columns

Here is an example of grouping by (year, month) combination:

yearly_monthly_temps = (
df
.assign(year=df['date'].dt.year,

month=df['date'].dt.month)
.groupby(['year', 'month'])['temperature']
.mean ()

LSE DS105W (2025/26)

Presenting Your Data

i

You just learned to produce summary tables with .groupby (). Now let’'s make them readable.

LSE DS105W (2025/26)

34 /43

From GroupBy to Presentation

Here is the table we produced earlier:

yearly_stats =
weather_df
.groupby('year') ['temp']

.agg(['mean', 'max', 'min', 'std'l])
.reset_index()

year mean max min std

2005 14.349041 298 0.5 6.341563

2006 14.675342 315 0.8 6./64682

2007 14.390685 26.4 1.6 5.042399

It's fine but it would be better if all the decimal places were aligned.

LSE DS105W (2025/26)

pandas Styler basics

The .style method returns a Styler object you can customise:

yearly_stats.style.

year mean max min std

2005 143 298 05 6.3

2006 14.7 315 0.8 6.8

Documentation tips:

e Read all about the . style method in the pandas documentation.

LSE DS105W (2025/26)

https://pandas.pydata.org/docs/user_guide/style.html

for number control

You can format different columns differently. For example, you can format the column to
show 1 decimal place and the column to show 2 decimal places:

yearly stats.style.format({
IImeanll: 11 OCII’
IImaXII: 11 OCII’

Ilminll: 11 OCII’
IIStdII: 11 11

F)

This doesn’t change the underlying data but just how it is displayed.

<" Train your documentation skills by reading about these strings in the official Python
documentation.

v
r
LSE DS105W (2025/26) q&

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/string.html#format-specification-mini-language

38 /43

.background gradient() forvisual patterns

yearly_stats.style.background_gradient(subset=['mean'], cmap='Y10rRd')

The gradient highlights the column values using colour. Hotter years get warmer colours.

Can you see the warming trend now? The colour does the work.

« cmap stands for “colour map”. 'Y10rRd' goes from yellow (low) to red (high). Other
useful maps: 'Blues’, 'RdY1lGn"', 'coolwarm’.

<~ Train your documentation skills by reading about the cmap parameter in the matplotlib
documentation.

iy
LSE DS105W (2025/26) @

https://matplotlib.org/stable/users/explain/colors/colormaps.html#sequential
https://matplotlib.org/stable/users/explain/colors/colormaps.html#sequential

.bar () for inline comparison

yearly stats.style. (precision=2).bar(subset=['max'], cc

Inline bars within cells give immediate visual comparison of
magnitude. You can see which years had the highest maximum
temperatures at a glance.

LSE DS105W (2025/26)

Combining Styler methods

Chain methods together to build a complete presentation:

yearly_stats.style
.format({"mean": " °C", "max": " °c",
Ilminll: 11 OCII’ Ils.tdll: 11 II})

.background_gradient(subset=['mean'], cmap='Y1l0rRd")
.bar(subset=['max'], color='#ED9255")
.set_caption("London's average temperature has risen [this much]")

is where your narrative title goes. The caption tells the reader what the table
means, not what it contains.

v
r
LSE DS105W (2025/26) q&

41743

A note on Al and styling

Formatting tables is the kind of task that | really don’t mind if you delegate to an Al chatbot. The Styler
API has dozens of options and memorising them is not a good use of your time.

What I'd recommend:

1. Do the DataFrame transformation yourself (the .groupby (), the filtering, the . reset_index()). That’s
where your analytical thinking lives.

2. Once you have the table you want to present, ask an Al chatbot to produce the Styler code. Something
like: “Style this DataFrame so the mean column has a yellow-to-red gradient and all temperatures

show one decimal place.”

3. Then check the output. Does the colour scale make sense for your data range? Are the column names
what you expected? Does .set_caption() say what you actually found?

Compare what the chatbot gives you against the pandas Styler documentation. Al chatbots sometimes
hallucinate method names or use deprecated parameters. The docs are the ground truth.

l « The skill here is knowing what table you want and being able to verify the result. The syntax is just plumbing.

4
LSE DS105W (2025/26) @

https://pandas.pydata.org/docs/user_guide/style.html

Styler for your Mini-Project 1

Your NBO3 requires two insights. You can present them as:

e 2 styled DataFrames
e 1styled DataFrame + 1 seaborn visualisation

e 2 seaborn visualisations

You now have everything you need to produce styled DataFrame insights and tomorrow’s lab

will give you the essentials of seaborn if you choose to use visualisations in your Mini-Project
1.

LSE DS105W (2025/26)

42 /43

Looking Ahead

e Tomorrow’s lab: the essentials of seaborn (in case you want to use visualisations in your
Mini-Project 1)

e You now have the tools to start NBO2 and NBO3 using styled DataFrames

e Seaborn is optional for MP1 but gives you more presentation options

Resources:

o B Lecture notebook (downloadable)
« B \\05 Lab tomorrow
e 5 Post questions in #help on Slack

e 17 Attend drop-in sessions

Looking ahead: Week 06 (Reading Week) is focus time for Mini-Project 1 completion.

LSE DS105W (2025/26)

43 /43

http://localhost:4861/2025-2026/winter-term/weeks/week05/lab.html

