
Week 05
Summarising and Presenting
Data

DS105W –

Data for

Data

Science

Dr

🗓️ 19 Feb 2026

Jon Cardoso-Silva

LSE Data Science Institute

LSE DS105W (2025/26)

1 / 43

https://jonjoncardoso.github.io/
https://lse.ac.uk/dsi

Today’s Goals
Learn: Custom functions and the .apply() method

Discover: Temporal grouping and summarisation

Apply: Present summary tables with pandas Styler

Why this matters: These skills directly support your ✍️

 work.

Mini-

Project 1

LSE DS105W (2025/26)

2 / 43

http://localhost:4861/2025-2026/winter-term/summative/mini-project-1.html
http://localhost:4861/2025-2026/winter-term/summative/mini-project-1.html

1️⃣ From Loops to Functions
In the 💻 , you explored nested np.where() and boolean columns when classifying

weather attributes like temperature and rainfall.

Today, we’ll solve that same problem with a different (cleaner) approach: custom functions

and the .apply() method.

W04 Lab

LSE DS105W (2025/26)

3 / 43

http://localhost:4861/2025-2026/winter-term/weeks/week04/lab.html

The Problem We’re Solving
The task was to classify weather based on temperature and rainfall into the following

categories:

Category Description

Hot & Dry temperature > 25°C

and

rainfall < 1mm

Hot & Wet temperature > 25°C

and

rainfall >= 1mm

Mild & Dry temperature in 20-25°C

and

rainfall < 1mm

Mild & Wet temperature in 20-25°C

and

rainfall >= 1mm

Cool temperature < 20°C

and

rainfall any

With nested np.where():

weather_type = np.where(1
 temp >= 28,2
 np.where(rain < 1, "Hot & Dry", "Hot & Wet"),3
 np.where(4
 temp >= 20,5
 np.where(rain < 1, "Mild & Dry", "Mild & Wet"),6
 "Cool"7
)8
)9

LSE DS105W (2025/26)

4 / 43

What if…
Instead of using nested np.where(), I could just more naturally say:

and get this as a response:

(a single normal string)

… so that I could apply this to every combination of temperature and rainfall I have in my

dataset?

classify_weather(20, 1)

"Mild & Wet"

LSE DS105W (2025/26)

5 / 43

In the olden days…

Back in the days where we used for loops and separate

lists/arrays, this would look like this:

But we don’t do for loops anymore 🙃

weather_types = []1
2

for i in range(len(temps)):3
 weather_type = classify_weather(temps[i], rain[i])4
 weather_types.append(weather_type)5

LSE DS105W (2025/26)

6 / 43

In the age of pandas…
If we had such a way to

classify weather, we

could use vectorised

operations in pandas to

classify weather for

every row in our dataset

in a single line of code

(instead of a for loop).

It would look like this:

Neat, wouldn’t you say?

I will explain the axis=1 argument in more detail in a moment…

df['weather'] = df.apply(classify_weather, axis=1)

LSE DS105W (2025/26)

7 / 43

What is a function?
It’s a reusable block of code that takes inputs and produces an output. You can invoke it by

calling its name with the appropriate inputs.

How to define a function: Key components:

def: defines a function

Function name: you choose a

descriptive and clear name

Parameters: are the inputs to the

function

Docstring explains what it does

return produces the output

def function_name(param1, param2, ...):
 """
 Docstring: What this function does
 """
 # Function body

 ...code that does something with the params...

 return output

LSE DS105W (2025/26)

8 / 43

Functions Make Logic Testable
You always test a function on single values first.

Why test first? Easier to debug a function than nested

np.where()!

Test on single values first
print(f"30°C: {is_hot(30)}") # True
print(f"20°C: {is_hot(20)}") # False
print(f"25°C: {is_hot(25)}") # True (boundary case)

LSE DS105W (2025/26)

9 / 43

From loops to functions
The .apply() method in pandas allows you to apply a function to every element in a Series.

It works kind of like a for loop, but cleaner and more efficient.

It looks like this:

The output is a new with the same index as the original Series.

That is, something like this:

df['temperature'].apply(is_hot)

pandas Series

is_hot [True, False, False, True, ...]
dtype: object

LSE DS105W (2025/26)

10 / 43

https://pandas.pydata.org/docs/reference/api/pandas.Series.html

Adding a new column to the DataFrame
If you assign the output of the .apply() method to a new column in the DataFrame…

using the = operator:

alternatively, you can use the .assign() method:

df['is_hot'] = df['temperature'].apply(is_hot)

df = df.assign(is_hot=df['temperature'].apply(is_hot))

LSE DS105W (2025/26)

11 / 43

Either way, you would get a new column in the DataFrame with

the results:

date temperature is_hot

2024-08-15 28 True

2024-08-16 22 False

2024-08-17 26 True

LSE DS105W (2025/26)

12 / 43

Filtering data (recap)
Last week, we talked about code that looked like this:

That is, you create a boolean array using a logical condition and then use it to filter the

DataFrame.

By the way, sometimes I find it clearner to split this into two steps:

It makes it easier to read and debug.

df[df['temperature'] > 25]

mask = df['temperature'] > 25
df[mask]

LSE DS105W (2025/26)

13 / 43

Filtering data with .apply()
You can also use .apply() to filter data.

This is equivalent to the code we saw last week.

df[df['temperature'].apply(is_hot)]

mask = df['temperature'].apply(is_hot)
df[mask]

LSE DS105W (2025/26)

14 / 43

When to use which?

In this particular case, I think the first approach is easier to read and debug:

df[df['temperature'] > 25].

This is because greater than (>) is a simple logical operation that is already

vectorised and implemented in the pandas (and numpy) library.

Make it a habit to search through the pandas documentation to

see if the operation you want to perform is already vectorised.

LSE DS105W (2025/26)

15 / 43

The two types of .apply()
When you do df[column].apply(function), you are applying

the function to every element in the pandas Series.

But if you do df.apply(function), you are applying the

function to each dimension (row or column) in the DataFrame.

LSE DS105W (2025/26)

16 / 43

The two types of data in pandas
Pandas has two major data types:

: one-dimensional (a single column or a single row).

It’s essentially a numpy array with additional metadata:

 and .

: two-dimensional (a table of rows and columns).

It’s essentially a collection of pandas Series.

Series

index name

DataFrame

LSE DS105W (2025/26)

17 / 43

https://pandas.pydata.org/docs/reference/api/pandas.Series.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.index.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.name.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

The two types of .apply() (continued)
When you do df[column].apply(function), you are applying

the function to every element in the pandas Series.

But if you do df.apply(function), you are applying the

function to each dimension (row or column) in the DataFrame.

You can specify an axis argument to control which dimension

you want to apply the function to.

axis=0 means “down the rows” (column-wise) and axis=1
means “across columns” (row-wise).

LSE DS105W (2025/26)

18 / 43

One-liners with lambda
Sometimes you just want a quick, inline function for a one-liner. Use lambda.

You can also combine with .assign() for method chaining:

When logic grows complex, prefer a named def function for readability and testing.

Same as defining is_hot(), but inline
df['is_hot'] = df['temperature'].apply(lambda t: t >= 25)

df = (
 df
 .assign(
 year=lambda d: d['date'].dt.year,
 month=lambda d: d['date'].dt.month,
 is_hot=lambda d: d['temperature'] >= 25,
)
)

LSE DS105W (2025/26)

19 / 43

Comparing Approaches
Nested np.where() (W04 Lab):

Function + .apply() (Clean):

💭 Note: I used row as the parameter rather than the individual columns.

weather = np.where(
 temp >= 28,
 np.where(rain < 1, "Hot & Dry", "Hot & Wet"),
 # ... unreadable nesting
)

def classify_weather(row):
 temp = row['temperature']
 rain = row['rainfall']

 if temp >= 28 and rain < 1:
 return "Hot & Dry"
 # ... clear if-elif logic

df['weather'] = df.apply(classify_weather, axis=1)

LSE DS105W (2025/26)

20 / 43

When to Use Functions
Extract functions when:

Logic is complex (multiple

conditions)

You need to test edge cases

(lots of if-elif-else statements)

You’ll reuse the logic elsewhere

Nested conditionals would become

unreadable

Use built-in operations when:

Logic is simple (one condition)

Vectorised operations suffice

Pandas/NumPy already has the

operation

💡 Get used to searching the documentation.

We can’t possibly teach you all the

operations that are available in pandas and

numpy.

LSE DS105W (2025/26)

21 / 43

Connecting to Your Work
You might need to use custom functions (def statements) and

apply() in your ✍️ either to filter data based on

complex logic or to create classification labels.

Mini-Project 1

LSE DS105W (2025/26)

22 / 43

http://localhost:4861/2025-2026/winter-term/summative/mini-project-1.html

2️⃣ Temporal Data
To answer questions like the one you are working on in your Mini-Project 1, that is,

“Does London’s air clean up on weekends?”

You need to:

1. Work with datetime objects

2. Extract date components (year, month, day, day of week)

3. Aggregate data by date components to reveal patterns

LSE DS105W (2025/26)

23 / 43

DateTime Conversion
APIs typically return timestamps as Unix epoch (seconds since

1970):

Convert to datetime:

Now you get readable dates:

1633046400 # What date is this?? 🤔

df['date'] = pd.to_datetime(df['timestamp'], unit='s', utc=True)

2021-10-01 00:00:00+00:00

LSE DS105W (2025/26)

24 / 43

The .dt Accessor
Once you have datetime objects, you have superpowers!

You can extract components of the datetime object using the .dt
accessor:

Before:

date

2024-08-15

2024-08-16

2024-08-17

After:

date year month day dayofweek

2024-08-15 2024 8 15 3 (Thursday)

2024-08-16 2024 8 16 4 (Friday)

2024-08-17 2024 8 17 5 (Saturday)

df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
df['dayofweek'] = df['date'].dt.dayofweek # Monday=0

LSE DS105W (2025/26)

25 / 43

Recommended readings
I really like this RealPython tutorial

. Give it a read!

Most of the features that exist in the Python

default datetime module are also available in

the pandas library.

This is also a

good resource.

Using

Python datetime to Work With Dates and

Times

pandas documentation page

LSE DS105W (2025/26)

26 / 43

https://realpython.com/python-datetime/
https://realpython.com/python-datetime/
https://realpython.com/python-datetime/
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

☕ Coffee Break

After the break:

The groupby() method: split-

apply-combine strategy

pandas Styler for presenting your

data

LSE DS105W (2025/26)

27 / 43

3️⃣ Split -> Apply -> Combine

Very often, we need to calculate summary statistics for groups of

data instead of for the entire dataset.

For example, you might want to calculate the average

temperature for each month in a year.

LSE DS105W (2025/26)

28 / 43

The groupby() method
The pandas library provides a method called groupby() to help you do precisely this:

Before (raw data):

date year temperature

2021-01-15 2021 5

2021-06-15 2021 22

2022-01-15 2022 6

2022-06-15 2022 24

What pandas will do:

Separate the data into groups based on

the year column.

Calculate the mean for the entire

temperature column for each year.

Combine the results back together into a

new DataFrame 👉

After:

year temperature

2021 13.5

2022 15.0

df.groupby('year')['temperature'].mean()

LSE DS105W (2025/26)

29 / 43

GroupBy Fundamentals
Basic pattern:

Common aggregation functions:

.mean() - average

.median() - middle value

.sum() - total

.max() - maximum

.min() - minimum

.count() - number of items

df.groupby('grouping_column')['column_to_aggregate'].function()

LSE DS105W (2025/26)

30 / 43

Method Chaining for Readability
When chaining multiple operations, split them across lines:

Each operation is on its own line, making the transformation clear and debuggable. (R users

might recognise this as similar to the %>% operator.)

Alternative (harder to read?):

plot_df = (
 df.groupby('year')['temperature']
 .mean()
 .reset_index()
)

plot_df = df.groupby('year')['temperature'].mean().reset_index()

LSE DS105W (2025/26)

31 / 43

Temporal Grouping Examples

or, say:

Average temperature by year (method chaining)
yearly_temps = (
 df
 .assign(year=df['date'].dt.year) # add a new column temporari
 .groupby('year')['temperature']
 .mean()
)

Count hot days by month (method chaining)
hot_days_per_month = (
 df.loc[df['is_hot']]
 .assign(month=df['date'].dt.month)
 .groupby('month')
 .size()
) LSE DS105W (2025/26)

32 / 43

You can group by multiple columns
Here is an example of grouping by (year, month) combination:

Average temperature by year and month (method chaining)
yearly_monthly_temps = (
 df
 .assign(year=df['date'].dt.year,
 month=df['date'].dt.month)
 .groupby(['year', 'month'])['temperature']
 .mean()
)

LSE DS105W (2025/26)

33 / 43

4️⃣ Presenting Your Data
You just learned to produce summary tables with .groupby(). Now let’s make them readable.

LSE DS105W (2025/26)

34 / 43

From GroupBy to Presentation
Here is the yearly_stats table we produced earlier:

year mean max min std

2005 14.349041 29.8 0.5 6.341563

2006 14.675342 31.5 0.8 6.764682

2007 14.390685 26.4 1.6 5.042399

It’s fine but it would be better if all the decimal places were aligned.

yearly_stats = (
 weather_df
 .groupby('year')['temp']
 .agg(['mean', 'max', 'min', 'std'])
 .reset_index()
)

LSE DS105W (2025/26)

35 / 43

pandas Styler basics
The .style method returns a Styler object you can customise:

year mean max min std

2005 14.3 29.8 0.5 6.3

2006 14.7 31.5 0.8 6.8

Documentation tips:

Read all about the .style method in the .

yearly_stats.style.format("{:.1f}")

pandas documentation

LSE DS105W (2025/26)

36 / 43

https://pandas.pydata.org/docs/user_guide/style.html

.format() for number control
You can format different columns differently. For example, you can format the mean column to

show 1 decimal place and the std column to show 2 decimal places:

This doesn’t change the underlying data but just how it is displayed.

👉 Train your documentation skills by reading about these {:1f} strings in the

.

yearly_stats.style.format({
 "mean": "{:.1f}°C",
 "max": "{:.1f}°C",
 "min": "{:.1f}°C",
 "std": "{:.2f}"
})

official Python

documentation

LSE DS105W (2025/26)

37 / 43

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/string.html#format-specification-mini-language

.background_gradient() for visual patterns

The gradient highlights the column values using colour. Hotter years get warmer colours.

Can you see the warming trend now? The colour does the work.

💡 cmap stands for “colour map”. 'YlOrRd' goes from yellow (low) to red (high). Other

useful maps: 'Blues', 'RdYlGn', 'coolwarm'.

👉 Train your documentation skills by reading about the cmap parameter in the

.

yearly_stats.style.background_gradient(subset=['mean'], cmap='YlOrRd')

matplotlib

documentation

LSE DS105W (2025/26)

38 / 43

https://matplotlib.org/stable/users/explain/colors/colormaps.html#sequential
https://matplotlib.org/stable/users/explain/colors/colormaps.html#sequential

.bar() for inline comparison

Inline bars within cells give immediate visual comparison of

magnitude. You can see which years had the highest maximum

temperatures at a glance.

yearly_stats.style.format(precision=2).bar(subset=['max'], co

LSE DS105W (2025/26)

39 / 43

Combining Styler methods
Chain methods together to build a complete presentation:

.set_caption() is where your narrative title goes. The caption tells the reader what the table

means, not what it contains.

(
 yearly_stats.style
 .format({"mean": "{:.1f}°C", "max": "{:.1f}°C",
 "min": "{:.1f}°C", "std": "{:.2f}"})
 .background_gradient(subset=['mean'], cmap='YlOrRd')
 .bar(subset=['max'], color='#ED9255')
 .set_caption("London's average temperature has risen [this much]")
)

LSE DS105W (2025/26)

40 / 43

A note on AI and styling
Formatting tables is the kind of task that I really don’t mind if you delegate to an AI chatbot. The Styler

API has dozens of options and memorising them is not a good use of your time.

What I’d recommend:

1. Do the DataFrame transformation yourself (the .groupby(), the filtering, the .reset_index()). That’s

where your analytical thinking lives.

2. Once you have the table you want to present, ask an AI chatbot to produce the Styler code. Something

like: “Style this DataFrame so the mean column has a yellow-to-red gradient and all temperatures

show one decimal place.”

3. Then check the output. Does the colour scale make sense for your data range? Are the column names

what you expected? Does .set_caption() say what you actually found?

Compare what the chatbot gives you against the . AI chatbots sometimes

hallucinate method names or use deprecated parameters. The docs are the ground truth.

💡 The skill here is knowing what table you want and being able to verify the result. The syntax is just plumbing.

pandas Styler documentation

LSE DS105W (2025/26)

41 / 43

https://pandas.pydata.org/docs/user_guide/style.html

Styler for your Mini-Project 1
Your NB03 requires two insights. You can present them as:

2 styled DataFrames

1 styled DataFrame + 1 seaborn visualisation

2 seaborn visualisations

You now have everything you need to produce styled DataFrame insights and tomorrow’s lab

will give you the essentials of seaborn if you choose to use visualisations in your Mini-Project

1.

LSE DS105W (2025/26)

42 / 43

Looking Ahead
Tomorrow’s lab: the essentials of seaborn (in case you want to use visualisations in your

Mini-Project 1)

You now have the tools to start NB02 and NB03 using styled DataFrames

Seaborn is optional for MP1 but gives you more presentation options

Resources:

📓 Lecture notebook (downloadable)

💻 tomorrow

💬 Post questions in #help on Slack

📅 Attend drop-in sessions

Looking ahead: Week 06 (Reading Week) is focus time for Mini-Project 1 completion.

W05 Lab

LSE DS105W (2025/26)

43 / 43

http://localhost:4861/2025-2026/winter-term/weeks/week05/lab.html

